25 Practice Problems for Derivatives

November 16, 2014

1 Power rule

Find the derivative of each of the following functions:

1. $a(x)=3 x^{7}-10 x+24 x^{3}-1$

$$
a^{\prime}(x)=3 \cdot 7 x^{6}-10 \cdot 1 x^{0}+24 \cdot 3 x^{2}-0=21 x^{6}-10+72 x^{2}
$$

2. $b(x)=\frac{x^{2}-5 x+3}{\sqrt[3]{x}}$

$$
\begin{gathered}
b(x)=\frac{x^{2}-5 x+3}{x^{1 / 3}}=\left(x^{2}-5 x+3\right) x^{-1 / 3}=x^{5 / 3}-5 x^{2 / 3}+3 x^{-1 / 3} \\
b^{\prime}(x)=\frac{5}{3} x^{2 / 3}-\frac{10}{3} x^{-1 / 3}-x^{-4 / 3}
\end{gathered}
$$

3. $c(x)=5^{2}-\frac{3}{x^{4}}$

$$
\begin{gathered}
c(x)=25-3 x^{-4} \\
c^{\prime}(x)=0-3 \cdot\left(-4 x^{-5}\right)=12 x^{-5}
\end{gathered}
$$

2 Product rule

Find the derivative of each of the following functions:

1. $d(x)=\sin (x) \cos (x)$

$$
d^{\prime}(x)=\cos (x) \cos (x)+\sin (x) \cdot(-\sin (x))=\cos ^{2}(x)-\sin ^{2}(x)
$$

2. $e(x)=x^{10} e^{x}$

$$
e^{\prime}(x)=10 x^{9} e^{x}+x^{10} e^{x}
$$

3. $f(x)=2^{x} x^{2} \tan (x)$

$$
f^{\prime}(x)=\left(2^{x} \ln (2)\right) x^{2} \tan (x)+2^{x}(2 x) \tan (x)+2^{x} x^{2}\left(\sec ^{2}(x)\right)
$$

3 Quotient rule

Find the derivative of the following function:

- $g(x)=\frac{2 e^{x}+4}{\cos (x)+3 x-1}$

$$
g^{\prime}(x)=\frac{\left(2 e^{x}\right)(\cos (x)+3 x-1)-\left(2 e^{x}+4\right)(-\sin (x)+3)}{(\cos (x)+3 x-1)^{2}}
$$

Find the second derivative of the following function:

- $h(x)=\frac{\sin (x)}{x^{2}}$

$$
\begin{gathered}
h^{\prime}(x)=\frac{\cos (x) x^{2}-\sin (\mathrm{x}) 2 \mathrm{x}}{x^{4}} \\
h^{\prime \prime}(x)=\frac{\left(\left(-\sin (x) x^{2}+\cos (x) 2 x\right)-(\cos (x) 2 x+\sin (x) 2)\right) x^{4}-\left(\cos (x) x^{2}-\sin (\mathrm{x}) 2 \mathrm{x}\right) 4 x^{3}}{x^{8}}
\end{gathered}
$$

4 Chain rule

For each of the following, write the given function as a composition of two functions, i.e., as $f(g(x))$, where you have identified f and g. Then take the derivative using the chain rule. Note: some problems may require more than one chain rule.

1. $i(x)=\left(22 x^{4}+\sqrt{x}\right)^{9}$

Let $f(u)=u^{9}$, and $u=g(x)=22 x^{4}+\sqrt{x}=22 x^{4}+x^{1 / 2}$. Then $i(x)=f(g(x))$. Also, $f^{\prime}(u)=9 u^{8}$, and $g^{\prime}(x)=88 x^{3}+\frac{1}{2} x^{-1 / 2}$. So by the chain rule,

$$
i^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)=9\left(22 x^{4}+x^{1 / 2}\right)^{8} \cdot\left(88 x^{3}+\frac{1}{2} x^{-1 / 2}\right)
$$

2. $j(x)=\sin \left(x^{3}+1\right)$

Let $f(u)=\sin (u)$, and $u=g(x)=x^{3}+1$. Then $j(x)=f(g(x))$. Also, $f^{\prime}(u)=\cos (u)$, and $g^{\prime}(x)=3 x^{2}$. So by the chain rule,

$$
j^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)=\cos \left(x^{3}+1\right) 3 x^{2}
$$

3. $k(x)=\sin ^{3}(x)+1$

Let, $f(u)=u^{3}+1$ and $u=g(x)=\sin (x)$. Then $k(x)=f(g(x))$. Also, $f^{\prime}(u)=3 u^{2}$ and $g^{\prime}(x)=\cos (x)$. So by the chain rule,

$$
k^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)=3 \sin ^{2}(x) \cos (x)
$$

Easier solution: It is probably better to think of $\sin ^{3}(x)$ and 1 as different functions that we are adding together, and then just do chain rule on $\sin ^{3}(x)$. Then $f(u)=u^{3}$ and $u=g(x)=$ $\sin (x)$. So we get:

$$
k^{\prime}(x)=\frac{d}{d x} \sin ^{3}(x)+\frac{d}{d x} 1=3 \sin ^{2}(x) \cos (x)
$$

4. $l(x)=\ln (\sin (x))$

Let $f(u)=\ln (u)$, and $u=g(x)=\sin (x)$. Then $l(x)=f(g(x))$. Also, $f^{\prime}(u)=\frac{1}{u}$, and $g^{\prime}(x)=\cos (x)$. So by the chain rule,

$$
\iota^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)=\frac{1}{\sin (x)} \cos (x)=\frac{\cos (x)}{\sin (x)}=\cot (x)
$$

5. $m(x)=\sin \left(\cos \left(e^{5 x^{2}-3 x+2}\right)\right)$

This time we have many nested chain rules. It will complicate things to give names to each function that we are composing. Instead, let's simply work from the outside, inwards. Remember, we take the derivative of one function at a time, and then plug in the next function(s), unchanged. Then move one step inwards.

$$
m^{\prime}(x)=\cos \left(\cos \left(e^{5 x^{2}-3 x+2}\right)\right) \cdot\left(-\sin \left(e^{5 x^{2}-3 x+2}\right)\right) \cdot\left(e^{5 x^{2}-3 x+2}\right) \cdot(10 x-3)
$$

5 Multiple rules

Find the derivative of each of the following functions:

1. $n(x)=\frac{x \ln (x)}{x^{3 / 2}+1}$

$$
n^{\prime}(x)=\frac{\left(1 \cdot \ln (x)+x \cdot \frac{1}{x}\right)\left(x^{3 / 2}+1\right)-(x \ln (x)) \frac{3}{2} x^{1 / 2}}{\left(x^{3 / 2}+1\right)^{2}}
$$

2. $o(x)=\left(3 x^{5}-2 x+7\right)^{13} e^{x}$

$$
o^{\prime}(x)=13\left(3 x^{5}-2 x+7\right)^{12}\left(15 x^{4}-2\right) e^{x}+\left(3 x^{5}-2 x+7\right)^{13} e^{x}
$$

3. $p(x)=\ln \left(x-\frac{1}{e^{x}}\right)$

$$
\begin{gathered}
p(x)=\ln \left(x-e^{-x}\right) \\
p^{\prime}(x)=\frac{1}{x-e^{-x}}\left(1-e^{-x} \cdot(-1)\right)=\frac{1+e^{-x}}{x-e^{-x}}
\end{gathered}
$$

4. $q(x)=\ln (x \sin (x))$

$$
q^{\prime}(x)=\frac{1}{x \sin (x)}(\sin (x)+x \cos (x))
$$

6 Implicit differentiation

Find y^{\prime} in each of the following examples. Remember, y is a function! This means you must use some extra derivative rules. Golden rule: if your derivative of a y-term doesn't have y^{\prime}, you missed a derivative rule!

1. $x^{2} y+\sin (y)=5 y^{2}+3$

$$
\begin{gathered}
\left(2 x y+x^{2} y^{\prime}\right)+\cos (y) y^{\prime}=10 y y^{\prime} \\
x^{2} y^{\prime}+\cos (y) y^{\prime}-10 y y^{\prime}=-2 x y \\
y^{\prime}\left(x^{2}+\cos (y)-10 y\right)=-2 x y \\
y^{\prime}=\frac{-2 x y}{x^{2}+\cos (y)-10 y}
\end{gathered}
$$

2. $e^{2 y+1}=x$

$$
\begin{aligned}
& e^{2 y+1} \cdot 2 y^{\prime}=1 \\
& y^{\prime}=\frac{1}{2} e^{-(2 y+1)}
\end{aligned}
$$

Find $y^{\prime \prime}$ from the following equation.

- $x^{3}+y^{3}=1$

Take an implicit derivative with respect to x :

$$
3 x^{2}+3 y^{2} y^{\prime}=0
$$

Do it again:

$$
\begin{gathered}
6 x+\left(\left(6 y y^{\prime}\right) y^{\prime}+3 y^{2} y^{\prime \prime}\right)=0 \\
6 x+6 y\left[y^{\prime}\right]^{2}+3 y^{2} y^{\prime \prime}=0
\end{gathered}
$$

The final answer can be in terms of x and y, but not y^{\prime}. Look back to our first differentiated equation, and solve for y^{\prime} :

$$
\begin{gathered}
3 x^{2}+3 y^{2} y^{\prime}=0 \\
3 y^{2} y^{\prime}=-3 x^{2} \\
y^{\prime}=-\frac{x^{2}}{y^{2}}
\end{gathered}
$$

Now plug into our second differentiated equation:

$$
6 x+6 y\left[y^{\prime}\right]^{2}+3 y^{2} y^{\prime \prime}=0
$$

$$
\begin{gathered}
6 x+6 y\left(-\frac{x^{2}}{y^{2}}\right)^{2}+3 y^{2} y^{\prime \prime}=0 \\
6 x+6 \frac{x^{4}}{y^{3}}+3 y^{2} y^{\prime \prime}=0 \\
3 y^{2} y^{\prime \prime}=-6 x-6 \frac{x^{4}}{y^{3}} \\
y^{\prime \prime}=\frac{-6 x-6 \frac{x^{4}}{y^{3}}}{3 y^{2}}
\end{gathered}
$$

7 Logarithmic differentiation

In the following problems you will find it helpful to make an equation of the form $y=\ldots$ and take a natural logarithm of both sides before differentiating.

1. $r(x)=x^{x}$

$$
\begin{gathered}
\text { Let } y=x^{x} \\
\ln (y)=\ln x^{x} \\
\ln (y)=x \ln (x)
\end{gathered}
$$

Differentiate.

$$
\begin{gathered}
\frac{y^{\prime}}{y}=1 \cdot \ln (x)+x \cdot \frac{1}{x} \\
y^{\prime}=y(\ln (x)+1)
\end{gathered}
$$

Substitute in for y.

$$
r^{\prime}(x)=y^{\prime}=x^{x}(\ln (x)+1)
$$

2. $s(x)=\left(x^{2}-4\right)^{\sin (x)}$

$$
\begin{gathered}
y=\left(x^{2}-4\right)^{\sin (x)} \\
\ln (y)=\ln \left(\mathrm{x}^{2}-4\right)^{\sin (\mathrm{x})} \\
\ln (y)=\sin (x) \ln \left(\mathrm{x}^{2}-4\right) \\
\frac{y^{\prime}}{y}=\cos (x) \ln \left(\mathrm{x}^{2}-4\right)+\sin (\mathrm{x}) \frac{2 x}{x^{2}-4} \\
y^{\prime}=y\left(\cos (x) \ln \left(\mathrm{x}^{2}-4\right)+\sin (\mathrm{x}) \frac{2 x}{x^{2}-4}\right) \\
s^{\prime}(x)=y^{\prime}=\left(x^{2}-4\right)^{\sin (x)}\left(\cos (x) \ln \left(\mathrm{x}^{2}-4\right)+\sin (\mathrm{x}) \frac{2 x}{x^{2}-4}\right)
\end{gathered}
$$

3.

$$
t(x)=\frac{\sqrt{4 x^{3}-x+1}}{x^{2 / 3} \tan (x)}
$$

$$
\begin{gathered}
\ln y=\ln \frac{\sqrt{4 x^{3}-x+1}}{x^{2 / 3} \tan (x)} \\
=\ln \left(4 x^{3}-x+1\right)^{1 / 2}-\ln \left(x^{2 / 3} \tan (x)\right) \\
=\frac{1}{2} \ln \left(4 x^{3}-x+1\right)-\left(\ln x^{2 / 3}+\ln \tan (x)\right) \\
=\frac{1}{2} \ln \left(4 x^{3}-x+1\right)-\frac{2}{3} \ln x-\ln \tan (x)
\end{gathered}
$$

Now differentiate:

$$
\begin{gathered}
\frac{y^{\prime}}{y}=\frac{1}{2} \cdot \frac{12 x^{2}-1}{4 x^{3}-x+1}-\frac{2}{3} \cdot \frac{1}{x}-\frac{\sec ^{2}(x)}{\tan (x)} \\
t^{\prime}(x)=y^{\prime}=\frac{\sqrt{4 x^{3}-x+1}}{x^{2 / 3} \tan (x)}\left(\frac{1}{2} \cdot \frac{12 x^{2}-1}{4 x^{3}-x+1}-\frac{2}{3 x}-\frac{\sec ^{2}(x)}{\tan (x)}\right)
\end{gathered}
$$

8 Related rates

1. A spherical snowball is melting in the sun. Its radius is decreasing at a rate of $1 \mathrm{~cm} / \mathrm{s}$. When the radius reaches 5 cm , how quickly is the snowball losing volume?

I want you to draw a picture for every related rates problem. You should do so for these problems, although the solutions do not include
them. Our equation is the volume equation for a sphere.

$$
V=\frac{4}{3} \pi r^{3}
$$

The quantities that we know or want to find are:

$$
\frac{d r}{d t}=-1 \mathrm{~cm} / \mathrm{s} \quad \frac{d V}{d t}=?
$$

Differentiate our equation.

$$
\begin{gathered}
\frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t} \\
\frac{d V}{d t}=4 \pi(5)^{2}(-1)=-100 \pi \mathrm{~cm}^{3} / \mathrm{s}
\end{gathered}
$$

2. An airplane flies overhead 2 miles up at a speed of $500 \mathrm{mi} / \mathrm{hr}$. When it has travelled 1 mile from where you are, how quickly is the distance from you to the airplane increasing?

Again, draw the picture. If you do, you'll see that we have a right triangle. The triangle has height 2 mi . Let us label its base x, and its hypotenuse D. Our equation is

$$
2^{2}+x^{2}=D^{2}
$$

The quantities that we know or want to find are:

$$
\frac{d x}{d t}=500 \mathrm{mi} / \mathrm{h} \quad \frac{d D}{d t}=?
$$

Differentiate:

$$
\begin{aligned}
2 x \frac{d x}{d t} & =2 D \frac{d D}{d t} \\
\frac{d D}{d t} & =\frac{x}{D} \frac{d x}{d t}
\end{aligned}
$$

We need to know the value of D when $x=1 \mathrm{mi}$. Plug into our original equation.

$$
\begin{gathered}
2^{2}+1^{2}=D^{2} \\
D=\sqrt{5} \\
\frac{d D}{d t}=\frac{1}{\sqrt{5}}(500)=\frac{500}{\sqrt{5}} \mathrm{mi} / \mathrm{h}
\end{gathered}
$$

